Continuum discretization using orthogonal polynomials
نویسندگان
چکیده
منابع مشابه
Continuum discretization using orthogonal polynomials
A method for discretizing the continuum by using a transformed harmonic oscillator basis has recently been presented @Phys. Rev. A 63, 052111 ~2001!#. In the present paper, we propose a generalization of that formalism which does not rely on the harmonic oscillator for the inclusion of the continuum in the study of weakly bound systems. In particular, we construct wave functions that represent ...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملinjection into orbit optimization using orthogonal polynomialsinjection into orbit optimization using orthogonal polynomials
in this study, the problem of determining an optimal trajectory of a nonlinear injection into orbit problem with minimum time was investigated. the method was based on orthogonal polynomial approximation. this method consists of reducing the optimal control problem to a system of algebraic equations by expanding the state and control vector as chebyshev or legendre polynomials with undetermined...
متن کاملOrthogonal Polynomials
The theory of orthogonal polynomials plays an important role in many branches of mathematics, such as approximation theory (best approximation, interpolation, quadrature), special functions, continued fractions, differential and integral equations. The notion of orthogonality originated from the theory of continued fractions, but later became an independent (and possibly more important) discipl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2003
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.67.052108